Package: RGMM 2.1.0

RGMM: Robust Mixture Model

Algorithms for estimating robustly the parameters of a Gaussian, Student, or Laplace Mixture Model.

Authors:Antoine Godichon-Baggioni [aut, cre, cph], Stéphane Robin [aut]

RGMM_2.1.0.tar.gz
RGMM_2.1.0.zip(r-4.5)RGMM_2.1.0.zip(r-4.4)RGMM_2.1.0.zip(r-4.3)
RGMM_2.1.0.tgz(r-4.4-x86_64)RGMM_2.1.0.tgz(r-4.4-arm64)RGMM_2.1.0.tgz(r-4.3-x86_64)RGMM_2.1.0.tgz(r-4.3-arm64)
RGMM_2.1.0.tar.gz(r-4.5-noble)RGMM_2.1.0.tar.gz(r-4.4-noble)
RGMM_2.1.0.tgz(r-4.4-emscripten)RGMM_2.1.0.tgz(r-4.3-emscripten)
RGMM.pdf |RGMM.html
RGMM/json (API)

# Install 'RGMM' in R:
install.packages('RGMM', repos = c('https://godichon-baggioni.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • c++– GNU Standard C++ Library v3

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 121 downloads 4 exports 71 dependencies

Last updated 12 months agofrom:c3744351b1. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 02 2024
R-4.5-win-x86_64OKNov 02 2024
R-4.5-linux-x86_64OKNov 02 2024
R-4.4-win-x86_64OKNov 02 2024
R-4.4-mac-x86_64OKNov 02 2024
R-4.4-mac-aarch64OKNov 02 2024
R-4.3-win-x86_64OKNov 02 2024
R-4.3-mac-x86_64OKNov 02 2024
R-4.3-mac-aarch64OKNov 02 2024

Exports:Gen_MMRMMplotRobMMRobVar

Dependencies:askpassbootcellrangerclassclicodetoolscolorspacecpp11crayoncurldata.tableDescToolsdoParallele1071Exactexpmfansifarverforeachgenieclustggplot2gldgluegtablehmshttrisobanditeratorsjsonlitelabelingLaplacesDemonlatticelifecyclelmommagrittrMASSMatrixmclustmgcvmimemunsellmvtnormnlmeopensslpillarpkgconfigplyrprettyunitsprogressproxyR6RColorBrewerRcppRcppArmadilloRcppEigenreadxlrematchreshape2rlangrootSolveRSpectrarstudioapiscalesstringistringrsystibbleutf8vctrsviridisLitewithr

Readme and manuals

Help Manual

Help pageTopics
Robust Mixture ModelRGMM-package
Gen_MMGen_MM
RMMplotRMMplot
RobMMRobMM
RobVarRobVar